SOIL, LAND USE, AND LAND
CAPABILITY (AGRICULTURE IMPACT)
ASSESSMENT: FOR THE PROPOSED
DEVELOPMENT OF RENEWSTABLE®
NTOKOZO ON THE FARM
SCHURVEPOORT 63-HS PORTION 10
IN AMERSFOORT WITHIN THE DR
PIXELY KA ISAKA SEME LOCAL
MUNICIPALITY, MPUMALANGA
PROVINCE

REF: AGR_HDF NTOKOZO_23

DATE:

12 SEPTEMBER 2024

FINAL DRAFT

PREPARED FOR

PREPARED BY

"From the world we live to the world we seek"
40 Lyncon Road,
Carlswald Midrand,
1684

Tel: 087 803 2369

Email: admin@nsovo.co.za

DOCUMENT CONTROL

Report Name	Soil, Land Use, And Land Capability (Agriculture Impact) Assessment: For the Proposed Renewstable Power Plant Within Portion 10 Of the Farm Schurvepoort 63-Hs In The Province Of Mpumalanga, South Africa.
Reference	Nsovo Environmental Consulting cc
Version	Final Draft
Submitted to	HDF ENERGY Pty Ltd
Author	Tshiamo Setsipane, (Pr. Sci. Nat)
Reviewer	Munyadziwa Rikhotso
Date Produced	12 September 2024

EXECUTIVE SUMMARY

As part of the Eskom lander tender MWP1247GX, Hydrogene de France (HDF- Energy) has been awarded 1782 ha of Eskom's land to develop 8 Renewstable® hydrogen power plants in the Mpumalanga Province, South Africa. Distributed over five farm portions near the Tutuka and Majuba Coal Power Stations, HDF-Energy is part of a cluster of different project developers, also awarded with land in the area to develop infrastructure related to renewable energy. HDF-Energy, under its Special Purpose Company (SPC) "Renewstable Mpumalanga (Pty) Ltd", is undertaking the development and implementation of 4 projects referred to as Majuba Cluster that consists of the following:

- Renewstable® Qhakaza
- Renewstable® Bokamoso
- Renewstable® Sivutse
- Renewstable® Ntokozo

These projects are high-capacity renewable power plants based on hydrogen energy storage technology. They will provide the country with the respective electricity services. This ESIA project is specifically for the proposed Renewstable® Ntokozo, within an agricultural area on the Farm Schurvepoort 63-HS Portion 10, located approximately 18 km northeast of Majuba Power Station and approximately 8 km southeast of Amersfoort, within Ward 7 of Pixley Ka Seme Local Municipality in the Mpumalanga Province. The extent of the site is approximately 120 ha. The proposed site is located approximately 10km south-west of Amersfoort and 10km north-east of Daggakraal in ward 7 of Dr Pixley Ka Isaka Seme Local Municipality (DPKISLM), in turn, forms part of the Gert Sibande District Municipality (GSDM) of the Mpumalanga Province.

The study area is located within a subtropical highland climate or Monsoon-influenced temperate oceanic climate. This climate is characterized by cold, dry winters and warm, wet summers. The summers experience heavy precipitation, due to the presence of unstable humid air masses that encourage thunderstorm development. The mean annual rainfall ranges between 601-800 mm, which is considered sufficient to support rainfed agriculture. However, it is important to carefully consider the planting dates and the length of the growing season, as they may be affected.

Nsovo Environmental Consulting was appointed to conduct the soil, land use and land capability study as part of the Environmental Impact Assessment (EIA) process for the proposed Renewstable power plants and associated infrastructure (Hydrogen Power Centre) within portion 10 of the farm Schurvepoort 63-HS in the province of Mpumalanga, South Africa (henceforth referred to as study area).

Based on the observations during the site assessment, the dominant soils occurring within the study area are Mispah/Glenrosa, Mispah/Grabouw and Katspruit (associated with the watercourse). The majority of the soils

occurring within the study area do not meet the conditions for agricultural suitability to a certain extent, and these conditions include:

- 1. Adequate depth (greater than 60 cm) to accommodate root development for the majority of cultivated crops;
- 2. Good structure, as in water stable aggregates, which allows for root penetration and water retention;
- 3. Sufficient distribution of high-quality and potential soils within the study area to constitute a viable economic management unit and
- 4. Good climatic conditions, such as sufficient rainfall and sunlight increase crop variety.

However, based on site observations, the soils were tilled to break the plough layer in order to make them more productive.

Tables A below depicts the summary findings of the soils identified within the study area and their respective land capability and agricultural potential status.

Table A: Summary findings within the study area.

Renewstable Ntokozo Study Area							
Soil Forms	Area (Ha)	Percentage (%)	Land Capability	Agricultural Potential			
Glenrosa/Grabouw	94.10	71.3	Arable (Class IV)	Moderate			
Katspruit	5.56	4.2	Watercourse (Class V)	Very Low			
Mispah/Glenrosa	32.24	24.4	Grazing (Class VI)	Low			
Total Enclosed	131,90	100					

The development footprint presents areas of active pasture utilised for grazing purposes and some grass harvested and used for stall feeding. These areas are critical for the livestock farming taking place within the study area and regarded important from an agricultural point of view. According to the desk-based assessment (i.e., sourced from the Natural Agricultural Resource Atlas of South Africa database) the grazing capacity for this area is 4 Hectares per livestock unit which is considered adequate for large scale farming. It was also evident during the site verification that the grazing land was utilised for fodder which means that these areas are actively used for large scale purposes. As such, this presents a constraint for this project.

The loss of agricultural soils and the long-term change in land use will be localised to within the study area. The integrated mitigation measures must be implemented accordingly, with the aim of minimising the potential loss of these valuable soils considering the need for sustainable development.

Although the loss of agricultural soils and the permanent change in land use will be localised to within the study area, the cumulative loss of agricultural resources locally and regionally is moderate without mitigation and low with mitigation measures. It is the opinion of the specialist that the unmitigated scenario poses a threat to the sustainability of high potential agricultural soils. Therefore, integrated mitigation measures must be implemented accordingly, with the aim of minimising the potential loss of these valuable soils considering the need for sustainable development. Mixed land use, such as sheep grazing between solar arrays, should be considered to retain agricultural production while generating renewable energy.

Site Sensitivity Verification

In accordance with the procedures for the assessment and minimum criteria for reporting on identified environmental themes in terms of Sections 24(5)(a) and (h) and 44 of the NEMA, 1998, when applying for environmental authorisation the current use of the land and the environmental sensitivity of the site under consideration as identified by the national web-based environmental screening tool, must be confirmed by undertaking a site sensitivity verification.

The outcome of this site sensitivity verification is to:

- Confirm or dispute the current use of the land and the environmental sensitivity as identified by the screening tool; and
- Motivate and provide evidence of either the verified or different use of the land and environmental sensitivity of the site.

The screening tool analysis was conducted, which presented the findings as the impact on agricultural resources being of a high sensitivity in terms of agricultural potential. Based on the outcomes of the field assessment, this was found to be of moderate significance impact as presented on the screening tool due to the dominant soil forms, which are not high potential agricultural soils due to various limitations, which include shallower depth and requiring intensive management strategies to cultivate on. The land capability of the surrounding soils and the agricultural potential are very low to moderate due to adequate climatic conditions (i.e., rainfall, temperature) and appropriate slope, which allows for intensive commercial agricultural practices. The allocated sensitivities for the agricultural theme are presented on Table B below.

Table B: Screening tool assessment VS field verified verification assessment.

SITE SENSITIVITY VERIFICATION							
	Screening Tool Site Verification Outcome						
Renewstable® Ntokozo Study Area	High Sensitivity	Medium Sensitivity					

It is the opinion of the specialist that this study provides the relevant information required for the Environmental Impact Assessment phase of the project to ensure that appropriate consideration of the agricultural resources in the study area are made in support of the principles of Integrated Environmental Management (IEM) and sustainable development.

DECLARATION OF INDEPENDENCE

- I Tshiamo Setsipane, in my capacity as a specialist consultant, hereby declare that I:
- Act/acted as an independent specialist to HDF Energy Pty Ltd for this project.
- Do not have any personal, business, or financial interest in the project except for financial remuneration for specialist investigations completed in a professional capacity as specified by the Environmental Impact Assessment Regulations, 2014, as amended.
- Will not be affected by the outcome of the environmental process, of which this report forms part.
- Do not have any influence over the decisions made by the governing authorities.
- Do not object to or endorse the proposed developments but aim to present facts and my best scientific and professional opinion about the impacts of the development.
- Undertake to disclose to the relevant authorities any information that has or may have the potential to influence its decision or the objectivity of any report, plan, or document required in terms of the Environmental Impact Assessment Regulations, 2014, as amended.

Tshiamo Setsipane

12 September 2024

DOCUMENT GUIDE

This report was compiled according to the following information guidelines for a specialist report in terms of the Environmental Impact Assessment (EIA) Sections 24(5)(a) And (h) and 44 of The National Environmental Management (NEMA), Act 1998, as summarised on the Table below.

Table A: Document guide according to Regulation (No. R. 982) as amended.

Theme-Specific Requirements as per Government Notice No. 320Agricultural Resources Theme – Very High and High Sensitivity Rating as per Screening Tool Output

No.	NEMA Regs (2014)- Appendix 6	Relevant section in the report		
2	Agricultural Agro-Ecosystem Specialist Assessment			
2.1	The assessment must be undertaken by a soil scientist or agricultural	CV Attached		
	specialist registered with the South African Council for Natural			
	Scientific Professionals (SACNASP).			
2.2	The assessment must be undertaken on the preferred site and within	Section 1.1		
	the proposed development footprint.			
2.3	The assessment must be undertaken based on a site inspection as well	as an investigation of the current		
	production figures, where the land is under cultivation or has been w	ithin the past 5 years, and must		
	identify:			
2.3.1	the extent of the impact of the proposed development on the	Section 4		
	agricultural resources and	Section 4		
2.3.2	whether or not the proposed development will have an unacceptable			
	impact on the agricultural production capability of the site, and in the			
	event it does, whether the positive impact of the proposed	Section 4		
	development on agricultural resources outweighs such a negative			
	impact.			
2.4	The status quo of the site must be described, including the following as	pects, which must be considered		
	as a minimum in the baseline description of the agro-ecosystem:			
2.4.1	the soil form/s, soil depth (effective and total soil depth), top and			
	sub-soil clay percentage, terrain unit, and slope;	Section 3.2		
2.4.2	where applicable, the vegetation composition, available water	Section 3.2		
	sources, as agro-climatic information;			
2.4.3	the current productivity of the land-based on production figures for			
	all agricultural activities undertaken on the land for the past 5 years,	Section 1.6		
	expressed as an annual figure and broken down into production	Section 1.0		
	units;			

		1
2.4.4	the current employment figures (both permanent and casual) for	Section 1.6
	the land for the past 3 years, expressed as an annual figure and	
2.4.5	existing impacts on the site, located on a map (e.g., erosion, alien	Figures 20-23
	vegetation, non-agricultural infrastructure, waste, etc.).	
2.5	Assessment of impacts, including the following aspects which must be	considered as a minimum in the
	predicted impact of the proposed development on the agro-ecosystem	1:
2.5.1	change in productivity for all agricultural activities based on the	Section 6
	figures of the past 5 years, expressed as an annual figure and broken	
	down into production units;	
2.5.2	change in employment figures (both permanent and casual) for the	N/A
	past 5 years expressed as an annual figure and	
2.5.3	any alternative development footprints within the preferred site	
	would be of "medium" or "low" sensitivity for agricultural resources	Section 4
	as identified by the screening tool and verified through the site	Section 4
	sensitivity verification.	
2.6	The Agricultural Agro-Ecosystem Specialist Assessment findings must	be written up in an Agricultural
	Agro-Ecosystem Specialist Report.	
2.7	This report must contain the findings of the agro-ecosystem specialisms	st assessment and the following
	information, as a minimum:	
2.7.1	Details and relevant experience as well as the SACNASP registration	
	number of the soil scientist or agricultural specialist preparing the	Appendix C
	assessment, including a curriculum vitae;	
2.7.2	A signed statement of independence by the specialist;	Appendix A
2.7.3	The duration, date and season of the site inspection and the	Section 2.2
	relevance of the season to the outcome of the assessment;	Decition 2.2
2.7.4	A description of the methodology used to undertake the on-site	
	assessment inclusive of the equipment and models used, as	Section 2
	assessment inclusive of the equipment and models used, as relevant;	Section 2
2.7.5		Section 2
2.7.5	relevant;	
2.7.5	relevant; A map showing the proposed development footprint (including	Section 2 Figures 12- 14
2.7.5	relevant; A map showing the proposed development footprint (including supporting infrastructure) with a 50m buffered development	
2.7.5	relevant; A map showing the proposed development footprint (including supporting infrastructure) with a 50m buffered development envelope, overlaid on the agricultural sensitivity map generated by	
	relevant; A map showing the proposed development footprint (including supporting infrastructure) with a 50m buffered development envelope, overlaid on the agricultural sensitivity map generated by the screening tool;	

		,
2.7.7	An indication of possible long-term benefits that will be generated	
	by the project in relation to the benefits of the agricultural activities	Section 5
	on the affected land;	
2.7.8	Additional environmental impacts expected from the proposed	
	development based on the current status quo of the land including	Section 4.2
	erosion, alien vegetation, waste, etc.;	
2.7.9	Information on the current agricultural activities being undertaken	Section 3.2
	on adjacent land parcels;	Section 3.2
2.7.10	An identification of any areas to be avoided, including any buffers;	N/A
2.7.11	A motivation must be provided if there were development footprints	
	identified as per paragraph 2.5.3 above that were identified as	Section 5
	having a "medium" or "low" agriculture sensitivity and that were not	Section 5
	considered appropriate;	
2.7.12	Confirmation from the soil scientist or agricultural specialist that all	
	reasonable measures have been considered in the micro-siting of the	Section 5
	proposed development to minimise fragmentation and disturbance	Section 5
	of agricultural activities;	
2.7 .13	A substantiated statement from the soil scientist or agricultural	
	specialist with regards to agricultural resources on the acceptability	Section 5
	or not of the proposed development and a recommendation on the	Section 5
	approval or not of the proposed development;	
2.7.14	Any conditions to which this statement is subjected;	Section 5
2.7.15	Where identified, proposed impact management outcomes or any	
	monitoring requirements for inclusion in the Environmental	Section 5
	Management Programme (EMPr); and	
2.7.16	A description of the assumptions and any uncertainties or gaps in	Section 1.6
	knowledge or data.	Section 1.6
2.8	The Agricultural Agro-Ecosystem Specialist Assessment findings must	be incorporated into the Basic
	Assessment Report or Environmental Impact Assessment Report,	including the mitigation and
	monitoring measures identified, which are to be contained in the EMP	
2.9	A signed copy of the assessment must be appended to the Basic Asse	ssment Report or Environmental
	Impact Assessment Report.	

TABLE OF CONTENTS

DOCUMENT CONTROL	
EXECUTIVE SUMMARY	ii
DECLARATION OF INDEPENDENCE	vi
DOCUMENT GUIDE	vii
TABLE OF CONTENTS	x
1. INTRODUCTION	1
1.1 Project description	3
1.2 Aims and Objectives of the Study	4
1.3 Suitability of soils for agricultural cultivation	4
1.4 Applicable Legislation	
1.5 Terms of Reference	5
1.6 Assumptions, Assumptions uncertainties, limitations, and gaps	6
2. METHODOLOGY	
2.1 Desktop Study and Literature Review	
2.2 Site Survey	
2.3 Land Capability Classification	
2.4 DFFE Screening Tool	
2.5 DFFE Screening Tool	
3. DESKTOP RESULTS AND DISCUSSIONS	
3.1 Climatic Data	
3.2 Geology	
3.3 Clay Content	
3.4 Soil pH	
3.5 Soil and Terrain (SOTER) Dominant Soils	
3.6 Landtype Classes	
3.7 Desktop Land Capability	
3.8 Soil Potential	
4. FIELD VERIFIED RESULTS AND DISCUSSIONS	
4.1 Land Uses within the Study Area	
4.2 Soil Forms in the Study Area	
·	
4.2.1 Mispah/Grah a	
4.2.2 Mispah/Grabouw	
4.2.3 Katspruit	
4.3 Land Capability and Agricultural Potential	
5. IMPACT ASSESSMENT	
5.1 Assessment Methodology	
5.2 Impact Assessment Per Project Phase	
5.2.1 Construction Phase	
5.2.2 Operational Phase	
5.2.3 Closure and Decommissioning Phase	
5.3 Impact Summary Tables	
5.4 Gross Agricultural Income from the Study Area	
5.5 Impact Statement and Screening tool verification	
5.6 Consideration of renewable development zones	
6. CONCLUSION	
7. REFERENCES	47
LIST OF TABLES	

Table 1: Soil Capability Classification (after Scontey et al., 1987)	8
Table 2: National Land Capability Values (DAFF, 2017).	9
Table 3: Soil Agricultural Potential Criteria	10
Table 4: Soil forms in hectares (ha) occurring within the study area.	23
Table 5: Rating of impacts for the loss of land capability and associated mitigation measures for all project	ct phases
	32
Table 6: Rating of impacts for soil erosion and associated mitigation measures for all project phases	34
Table 7: Rating of impacts on soil compaction and associated mitigation measures for all project phases.	36
Table 8: Rating of impacts on soil contamination and associated mitigation measures for all project phas	es 39
LIST OF FIGURES	
Figure 1: Locality of the study area in relation to the surrounding areas	2
Figure 2: Screening tool sensitivity for the study area.	12
Figure 3: Mean Annual Rainfall associated with the study area.	13
Figure 4: Geological formations associated with the study area.	14
Figure 5: Clay percentage associated with the study area Error! Bookmark not	t defined.
Figure 6: Soil pH associated with the project area.	15
Figure 7: SOTER dominant soils associated with the study area.	16
Figure 8: Desktop land capability associated with the study area	17
Figure 9: Soil potential associated with the study area	18
Figure 10: Soil potential associated with the study area.	19
Figure 11: Land uses associated with the study area.	20
Figure 12: View of the identified shallow Mispah/Glenrosa soil forms	21
Figure 13: View of the identified Mispah/Grabouw.	22
Figure 14: View of the identified Dundee soil forms.	22
Figure 15: Dominant soils form within the study area.	24
Figure 16: Map depicting land capability of soils within the Study Area.	26
Figure 17: Agricultural potential for soils associated with the soils of the Paul Hugo Wier study area	28
Figure 18: Location of known regional renewable energy projects within the 50 km radius of the st	udy area
Error! Bookmark not	t defined.
List of Appendices	
APPENDIX A: INDEMNITY	<u></u> 48
APPENDIX B: IMPACT ASSESSMENT METHODOLOGY	<u> 47</u>
APPENDIX C: CURRICULUM VITAE OF SPECIALISTS	51

1. INTRODUCTION

As part of the Eskom lander tender MWP1247GX, Hydrogene de France (HDF) Energy has been awarded 1782 ha of Eskom's land to develop 8 Renewstable® power plants in the Mpumalanga Province, South Africa. Distributed over Five Farm portions within proximity of Tutuka and Majuba Coal Power Stations, HDF-Energy is part of a cluster of different project developers, also awarded with land in the area for the development of infrastructure related to renewable energy production. HDF-Energy, under its Special Purpose Company (SPC) "Renewstable Mpumalanga (Pty) Ltd", is undertaking the development and implementation of 4 projects referred to as Majuba Cluster that consists of the following:

- Renewstable® Qhakaza
- Renewstable® Bokamoso
- Renewstable[®] Sivutse
- Renewstable® Ntokozo

The project's main objective is to design, develop, build, manufacture, operate, and maintain a 34MW Renewstable® Ntokozo and related infrastructure near Amersfoort in Mpumalanga to generate clean energy/electricity, increase access to electricity and contribute to the country's sustainable development initiatives.

Nsovo Environmental Consulting was appointed by Hydrogen de France (HDF) to conduct the soil, land use and land capability study as part of the Environmental Impact Assessment (EIA) process for the proposed Renewstable power plants and associated infrastructure (Hydrogen Power Centre) within portion 10 of the farm Schurvepoort 63-HS in the province of Mpumalanga, South Africa (henceforth referred to as study area).

The proposed project will be located near Amersfoort, outside an urban area, on the Farm Schurvepoort 63-HS Portion 10, approximately 18 km northeast of Majuba Power Station and 8 km southeast of Amersfoort, within Ward 7 of Dr Pixley Ka Isaka Seme Local Municipality in the jurisdiction of the Gert Sibande District Municipality, Mpumalanga Province.

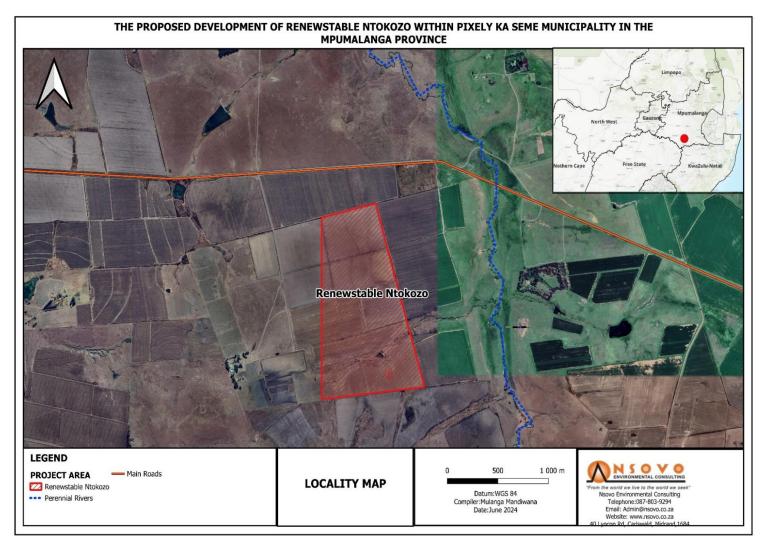


Figure 1: Locality of the study area in relation to the surrounding areas.

1.1 PROJECT DESCRIPTION

HDF-Energy proposes the development of a 34MW Renewstable®Ntokozo Power Plant, which is a high-capacity renewable power plant based on hydrogen BESS storage technology that harnesses renewable energy from a Photovoltaic (PV) Park and converts it into hydrogen using an electrolyser system. This hydrogen is stored in a compressed gas form; subsequently, when the photovoltaic park generates insufficient energy, the stored hydrogen is utilised to produce electricity for the grid through a fuel cell system. This innovative approach ensures a continuous and reliable power supply even when the PV park's energy production is inadequate. The system will only emit oxygen and water vapour as by-products.

The electricity produced by the plant will be purchased by a private(s) off-taker (s) at an agreed rate under the Power Purchase Agreement (PPA) for at least 25 years from the commissioning. The plant is scheduled to be commissioned in 2029 and will contribute to the greening of the local power grid and enhance the territory's energy independence.

The proposed development entails the following primary infrastructure:

Primary Infrastructure	Power Produces
Baseload electricity	25 MW morning, day, and evening - 6 MW night
Solar plant	80 MW
Electrolyzers	30 MW
Green H2 storage	132MWh
High-capacity fuel cells	6MW
Battery power	25MW
Battery storage	100MWh
Land required	110 hectares
Capacity factor	87%
Electricity production	356,16MWh daily 130 000 MWh yearly

Associated infrastructure includes the following:

- Hydrogen Power Centre
- Fencing and Security
- Control Room
- Warehouse
- Access roads
- Communications DC and AC cables installed underground and overhead
- High Voltage Collector station that will be shared with other IPPS

1.2 AIMS AND OBJECTIVES OF THE STUDY

The objective of the Soil, Land Use, and Land Capability is to fulfill and align the proposed project with the requirements of the Conservation of Agricultural Resources Act (CARA), 1983 (Act No. 43 of 1983) of South Africa. This act aims to promote the conservation of soil, water sources, vegetation, and the control of weeds and invader plants by managing natural agricultural resources. Thus, the proposed study aims to determine the possible impacts that the proposed development could have on the soil, land use, land capability, and agricultural potential and to identify areas of high sensitivity within the study area. This will be achieved by considering parameters such as soil quality, drainage, topography, climate, and water availability and providing sound input to ensure that land is used sustainably and responsibly. As such this specialist report has assessed and considered the following:

- The soil forms occurring within the study area;
- The associated land capability and agricultural sensitivity of the soils occurring within the study area;
- Discussion of the land capability and sensitivity in terms of the soils, water availability, surrounding development, and current status of land;
- Discussion of potential and actual impacts as a result of the proposed development; and
- Provide mitigation for the impacts as part of the Environmental Management Programme (EMPr).

1.3 SUITABILITY OF SOILS FOR AGRICULTURAL CULTIVATION

Assessing soil suitability for agricultural cultivation rests primarily on identifying soils suited to crop production. For soils to be classified as being suitable for crop cultivation, they must have the following properties:

- Adequate depth (greater than 60 cm) to accommodate root development for the majority of cultivated crops;
- Good structure, as in water-stable aggregates, which allows for root penetration and water retention;
- Sufficient clay and organic matter to provide nutrients for growing crops;

- Sufficient distribution of high quality and potential soils within the study area to constitute a viable economic management unit;
- Adequate clay content and deep enough water table to allow for water storage; and
- Good climatic conditions, such as sufficient rainfall and sunlight, increase crop choice variety.

1.4 APPLICABLE LEGISLATION

The most recent South African Environmental Legislation that needs to be considered for any new or expanding development with reference to assessment and management of soil and land use includes:

- The National Environmental Management Act. 1998 (Act 107 of 1998), requires that pollution and degradation of the environment be avoided, or, where it cannot be avoided, be minimised and remedied.
- The Conservation of Agricultural Resources (Act 43 of 1983) states that the degradation of the agricultural potential of soil is illegal.
- The Conservation of Agriculture Resources (Act 43 of 1983) requires the protection of land against soil erosion and the prevention of water logging and salinization of soils employing suitable soil conservation works to be constructed and maintained. The utilisation of marshes, water sponges, and watercourses is also addressed.

1.5 TERMS OF REFERENCE

The terms of reference applicable to the Soils, Land Capability, and Land Use Study include the following:

- A review of available desktop information about the study area site and compile various maps illustrating the desktop data;
- Discussion of the relevant desktop literature;
- Conduct a soil classification survey covering the study area according to the South African Soil
 Classification System: A Natural and Anthropogenic System for South Africa (Soil Classification
 Working Group, 2018);
- Determination of the current (baseline) soil physical, climatic conditions, and land uses, as well as the current land capabilities and agricultural sensitivity associated with the identified soil forms present in the study area;
- Identification and assessment of the potential impacts of the different project phases on the baseline soil, land use, and land capability properties as a result of the proposed development;
- Development of mitigation and management measures to minimize the negative impacts anticipated from the proposed development and

• Compile soil, land use, and land capability reports based on the field-finding data under current on-site conditions.

1.6 ASSUMPTIONS, ASSUMPTIONS UNCERTAINTIES, LIMITATIONS, AND GAPS

The following assumptions, uncertainties, limitations, and gaps were applicable for the soil, land use, and land capability assessment:

- It is assumed that the infrastructure components will remain as indicated on the layout and that the activities for the construction and operation of the infrastructure are limited to that typical for a project of this nature;
- The soil survey was confined to the study area outline with consideration of various land uses outside the study area;
- During the site assessment and compilation of the report, employment figures pertaining to the study area could not be sourced,
- A detailed investigation of economic aspects pertaining to the Production figures in terms of yield could not be sourced from the Natural Agricultural Resources Atlas of South Africa as the data was not available for areas utilizing their land for pasture; and
- Soil profiles were observed using a 1.5m hand-held soil auger; thus, a description of the soil characteristics deeper than 1.5m cannot be given.

2. METHODOLOGY

The assessment of the Study Area's agricultural potential was based on a combination of desktop studies to amass general information and site visits for status quo assessment, soil classification, and characterization, and the validation of generated information from the desktop studies.

2.1 DESKTOP STUDY AND LITERATURE REVIEW

Literature review and background study were carried out before beginning the field assessment to gather the study area's predetermined soil, land use, and land capability data. The data was sourced from the Soil and Terrain(SOTER) database and the Natural Agricultural Atlas of South Africa Version 3:

(https://ndagis.nda.agric.za/portal/apps/webappviewer/index.html?id=8b72eb2a25c04660a1ab2b562f6ec0bf)

2.2 SITE SURVEY

A desktop assessment was followed by a field investigation to validate the predetermined soil results obtained at the desktop level. The field survey was conducted over 3 days in October 2023, wherein soil auger tests were conducted, and soils were classified into soil forms according to the Soil Classification System: A Natural and Anthropogenic System for South Africa Soil Classification System (2018). It must be noted that the season has no bearing on the soil's morphological properties over a short-term period.

2.3 LAND CAPABILITY CLASSIFICATION

A land capability class is an interpretive grouping of land units with similar potential and containing limitations or hazards for long-term intensive use of land for rainfed farming determined by the interaction of climate, soil, and terrain. It is a more general term than land suitability and is more conservation oriented (See Table 1 below). It involves consideration of:

- Varying limitations to land use pertaining to rainfed cultivation and soil properties; and
- The risks of land damage from erosion and other causes.

Eight land capability classes were employed with potential decreases and limitations and hazards increasing from class 1 to class 8. Classes 1 to 4 are considered arable, whereas Class 5 is considered wet based soils or watercourses and Classes 6 to 8 are classified as grazing, forestry, or wildlife. This system is based on the Land Capability Classification system of the United States Department of Agriculture (USDA) Soil Conservation Service by Klingelbiel and Montgomery (1961) as well as by Scotney *et.al* (1987).

Table 1: Soil Capability Classification (after Scontey et al., 1987).

Land	Land	Intensity of Land Use									
Capability Group	Capability Class	wildlife	Forestry	Light grazing	Moderate grazing	Intensive grazing	Light cultivation	Moderate cultivation	Intensive cultivation	Very intensive cultivation	Limitations
Arable											There are no or few limitations. Very high arable potential. Very low erosion hazard
											Slight limitations. High arable potential. Low erosion hazard Moderate limitations. Some erosion hazards
	IV										Severe limitations. Low arable potential. High erosion hazard.
Grazing	V										Water course and land with wetness limitations
	VI										Limitations preclude cultivation. Suitable for perennial vegetation
	VII										Very severe limitations. Suitable only for natural vegetation
Wildlife	VIII										Extremely severe limitations. Not suitable for grazing or afforestation.

The updated and refined land capability ratings and database for the whole of South Africa was released by the Department of Fishery and Forestry (DAFF) in 2016. These land capability ratings were derived through a spatial evaluation modelling approach and a raster spatial data layer comprising fifteen (15) land capability evaluation values 9 (see Table 2 below). The new land capability describes the categories as 1 being the lowest and 15 being the highest. Values of below 8 are generally not suitable for the production of cultivated crops. (DAFF, 2017). Soil agricultural potential is impacted by several factors (see Table 3 below). The soil agricultural potential was evaluated based on the factors mentioned and described in Table 3 by assigning qualitative criteria ratings such as High, Moderate, or Marginal to low to the updated land capability ratings.

Table 2: National Land Capability Values (DAFF, 2016).

Land Capability evaluation value	Land Capability Description
1	Very Low
2	very Low
3	Very Low to Low
4	very zew to zew
5	Low
6	Low to Moderate
7	25 11 15 111 25 111 25
8	Moderate
9	Moderate to High
10	mederate to mg.
11	High
12	High to Very High
13	
14	Very High
15	,

Table 3: Soil Agricultural Potential Criteria

Criteria	Description
Rock Complex	If a soil type has prevalent rocks in the upper sections of the soil, it is a limiting
	factor to the soil's agricultural potential
Flooding Risk	The risk of flooding is determined by the closeness of the soil to water sources.
Erosion Risk	The soil erosion risk is determined by combining the wind and watererosion
	potentials.
Slope	The slope of the site could potentially limit the agricultural use thereof.
Texture	The texture of the soil can limit its use by being too sandy or too clayey.
Depth	The effective depth of soil is critical for the rooting zone for crops.
Drainage	The capability of soil to drain water is important as most grain crops do not
	tolerate submergence in water.
Mechanical Limitations	Mechanical limitations are any factors that could prevent the soil from being
	tilled or ploughed.
рН	The pH of the soil is important when considering soil nutrients and fertility.
Soil Capability	This section highlights the soil type's capability to sustain agriculture.
Climate Class	The climate class highlights the prevalent climatic conditions that couldinfluence
	the agricultural use of a site.
Land Capability /	The land capability or agricultural potential rating for a site combines the soil
Agricultural Potential	capability and the climate class to arrive at the potential of the site to support
	agriculture.

2.4 DFFE SCREENING TOOL

The Agricultural Agro-Ecosystem Assessment protocol provides the criteria for assessing and reporting impacts on agricultural resources for activities requiring Environmental Authorisation (EA). The assessment requirements of this protocol are associated with a level of environmental sensitivity determined by the national web-based environmental screening tool, which, for agricultural resources, is based on the most recent land capability evaluation values provided by the Department of Forestry, Fisheries, and the Environment (DFFE). The national web-based environmental screening tool can be accessed at: https://screening.environment.gov.za/screeningtool.

The primary purpose of the Agricultural Agro-Ecosystem Assessment is to determine the site's sensitivity considering the proposed land use change (from potential agricultural land to the proposed development is sufficiently considered). The information in this report aims to enable the Competent Authority (CA) to draw sound

conclusion and recommended on the proposed project and its potential impacts with specific focus on food security.

To meet this objective, the protocol requires that site sensitivity verification be conducted, and subsequent outcomes must meet the following objectives:

- It must confirm or dispute the current land use and the environmental sensitivity as indicated by the National Environmental Screening Tool;
- It must contain proof (e.g., photographs) of the current land use and environmental sensitivity pertaining to the study area;
- All data and conclusions are submitted together with the main report for the proposed development;
- It must indicate whether the proposed development will have an unacceptable impact on the agricultural production capability of the site, and if it does, whether such a negative impact is outweighed by the positive impact of the proposed development on agricultural resources and
- The report is prepared in accordance with the requirements of the Environmental Impact Assessment Regulations.

The report is thus compiled to meet the minimum report content requirements for impacts on agricultural resources by the proposed development.

2.5 DFFE SCREENING TOOL

The Screening tool for the study area is presented in Figure 2 below:

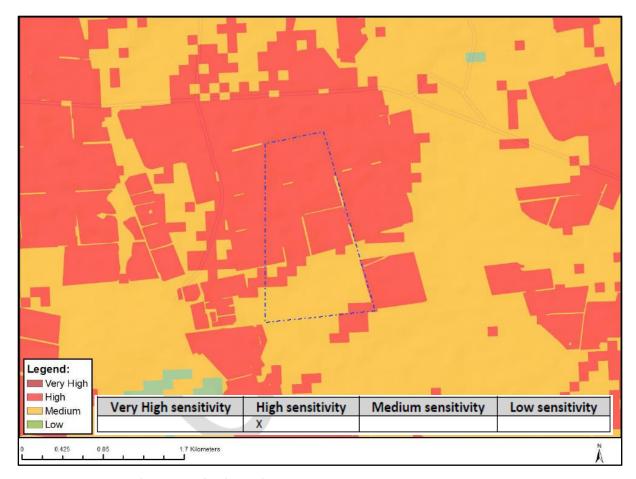


Figure 2: Screening tool sensitivity for the study area.

3. DESKTOP RESULTS AND DISCUSSIONS

3.1 CLIMATIC DATA

The study area is located within a subtropical highland climate or Monsoon-influenced temperate oceanic climate. This climate is characterized by cold, dry winters and warm, wet summers. The summers experience heavy precipitation, due to the presence of unstable humid air masses that encourage thunderstorm development. The mean annual rainfall ranges between 601-800 mm, which is considered sufficient to support rainfed agriculture. However, it is important to carefully consider the planting dates and the length of the growing season, as they may be affected. Figure 3 shows the mean annual rainfall associated with the study area.



Figure 3: Mean Annual Rainfall associated with the study area.

3.2 GEOLOGY

The soils associated with the study area are largely underlain by the Shale geological formation and the Dolerite geological formation along the eastern portion of the study area. Shale is a soft, brittle, fine-grained, and easily eroded sedimentary rock formed from mineral-rich silt, or mud, that was deposited in an aquatic environment, buried by other sediment, and compacted and cemented into hard rock. When exposed at the surface by erosion, shale weathers into thin layers called plates. The shales give rise to clay soils, and hence the freely drained red and yellow-brown soils of the apedal soil patterns. Dolerite is a medium- to fine grained, dark crystalline rock which formed underground when lava feeding the volcanoes cooled in its feeder pipes — sills (horizontal) and dykes (vertical). Dolerite dykes and sills are very common, often seen intruding other rock layers. Because of its high iron content, dolerite weathers to a bright red soil. Dolerite is the medium grained equivalent of basalt and gabbro. Figure 4, below, depicts the geology associated with the study area.



Figure 4: Geological formations associated with the study area.

3.3 CLAY CONTENT

The entire study area is characterized by the clay content between 15% and 35%. The clay content between 15% and 35% can be considered essential as the soil can hold more water during the fallow period and thus allowing for storage, these soils tend to be high in nutrients and do not have the propensity to leach nutrients, but however more inclined to be compacted and thus careful management strategies will need to be employed when cultivating on these soils.

3.4 SOIL PH

The soil pH associated with the soils occurring within the study area is between 5.5 to 6.4 which is slightly acidic. The low pH can be attributed to other factors such as the parent material, loss of organic matter, removal of soil minerals when crops are harvested, erosion of the surface layer, and effects of nitrogen and sulphur fertilizers. Figure 5, below, depicts the soil pH associated with soils occurring within the study area.

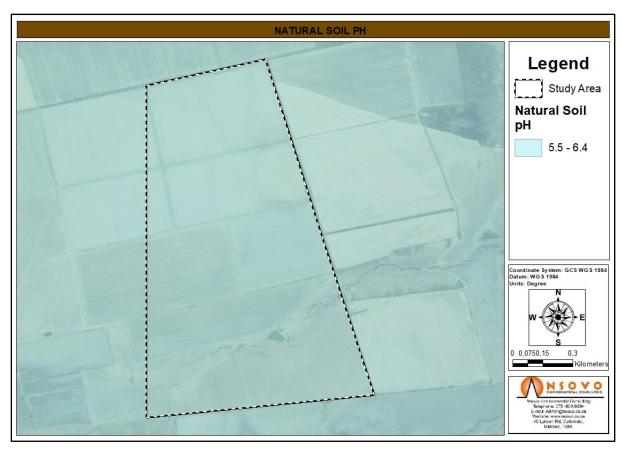


Figure 5: Soil pH associated with the project area.

3.5 SOIL AND TERRAIN (SOTER) DOMINANT SOILS

The entire study area is characterised by Eutric Planosols. These soils are characterised by a marked textural differentiation between the top and subsoil horizons. The subsoil horizons are typically clay enriched when compared to the sandier topsoil horizons because of clay illuviation and thus causing dense, strongly structured and slowly permeable subsoil horizons. These soils are prone to waterlogging conditions due to impeded water percolation and root penetration may be difficult for a wide variety of crops and thus only suitably adapted crops may be planted. Therefore, limiting the choice of crop to be cultivated. Figure 6 below illustrates the SOTER Dominant soils associated with the study area.

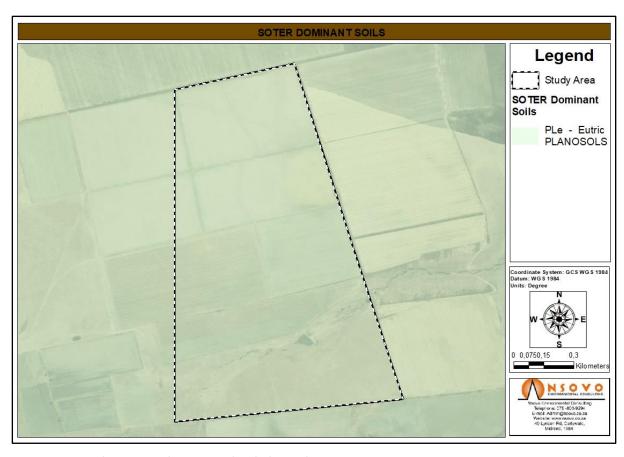


Figure 6: SOTER dominant soils associated with the study area.

3.6 LANDTYPE CLASSES

The Ca landtypes associated with the study area are the Ca2 Landtype. The Ca landtypes are characterised by are characterised by Plinthic landscapes with commonly occurring upland duplex and margalitic soils (base saturated, free lime, very strongly structured, hard consistence and 2:1 lattice clays). These strongly structured soils require extensive management strategies to be cultivated on as their strong structure will likely impede root penetration and only adapted crops can be cultivated and thus limiting the choice of crop. Figure 7 blow depicts the landypes classes associated with the study area.

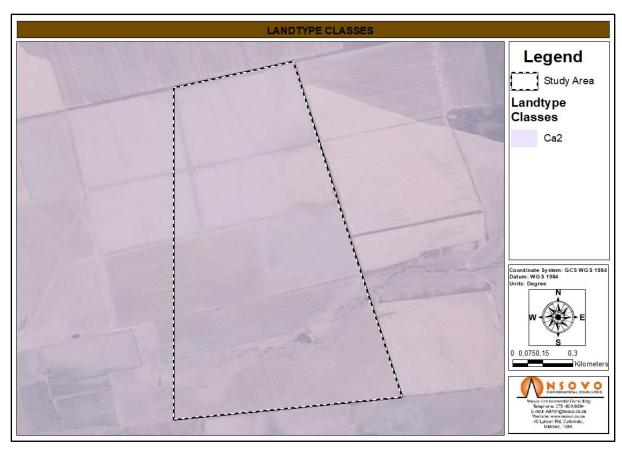


Figure 7: Desktop land capability associated with the study area.

3.7 DESKTOP LAND CAPABILITY

The desktop land capability associated with the soils occurring within the study area is of non-arable; grazing, woodland or wildlife capability (Class VII). Figure 8 below shows the desktop land capability associated with the study area.

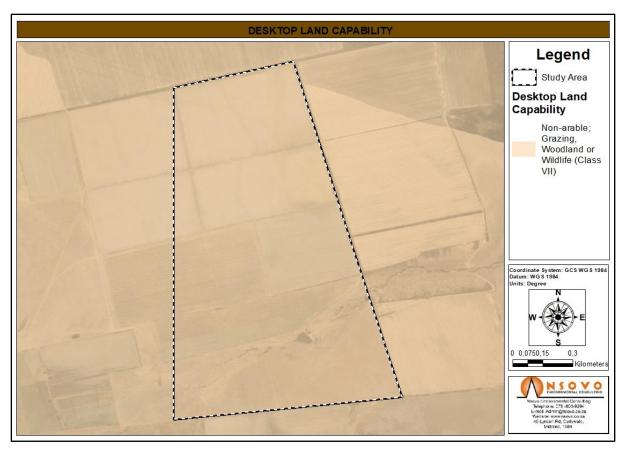


Figure 8: Soil potential associated with the study area.

3.8 SOIL POTENTIAL

The potential of soils associated with the study area is characterised as not suitable for arable agriculture; suitable for forestry or grazing where climate permits. Figure 9, below, depicts the soil potential associated with the study area.

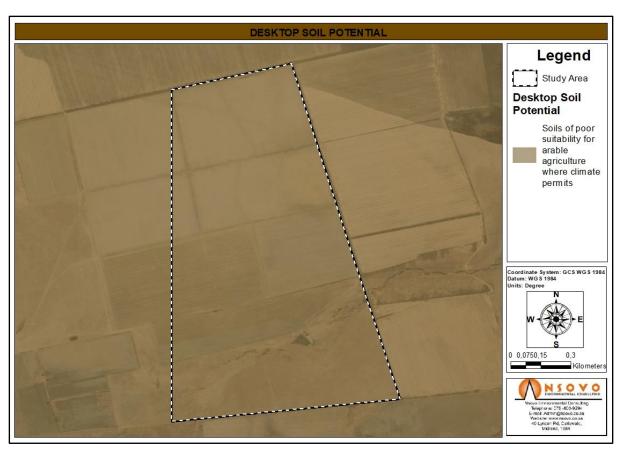


Figure 9: Soil potential associated with the study area.

4. FIELD VERIFIED RESULTS AND DISCUSSIONS

4.1 LAND USES WITHIN THE STUDY AREA

The study area was primarily dominated by cultivation activities and livestock farming. Figure 10 depicts the different land uses identified within the study area.

Figure 10: Land uses associated with the study area.

4.2 SOIL FORMS IN THE STUDY AREA

The section below focuses on the identified soil forms within the study area and are described below. The spatial distribution of the identified soil forms within each study area is presented in Figures 14. The summary table depicting the area of coverage of each identified soil form is presented in Tables 4.

4.2.1 Mispah/Glenrosa

The Mispah/Glenrosa are typically shallow. The shallow depth can be attributed to limited rock weathering and convex topographical conditions at the crest or scarp of the landscape, instances resulting in soil removal and, in some instances, leaving rocky outcrops behind. These types of soils are usually avoided for intensive use and thus left for grazing, forestry, and wildlife land uses unless intense management strategies are used, such as breaking of the lithic/saprolite layer (as was the case for the Atlanta study area, which cabbage was produced in these soils). The Mispah/Glenrosa soil forms are classified under the Grazing (Class VI) land capability class as they are primarily suited for perennial vegetation and have limitations that preclude cultivation.

Figure 11: View of the identified shallow Mispah/Glenrosa soil forms.

4.2.2 Mispah/Grabouw

The Mispah/Grabouw soil formation can be characterized as soils which have been altered to improve agricultural production, through land preparation and breaking of the plough layer (deep *in-situ* ripping) to increase the infiltration capacity and root penetration. This thus has resulted in the original horizon sequence no longer being recognizable and present in disjointed order while remaining within their essential original location. The Mispah/Grabouw are characterized by stoniness and a shallower depth, however, tillage practices were used to improve the soils for cultivation and thus these soils are classified under the Arable (Class IV).

Figure 12: View of the identified Mispah/Grabouw.

4.2.3 Katspruit

The Katspruit soil forms (wetland soils) are generally limited to supporting plants that are tolerant to prolonged wet conditions (i.e., hydrophytes). These soils, as they are associated with wetlands are of low agricultural potential due to various limiting factors such as high clay content and waterlogging conditions, thus creating anaerobic conditions not suitable for most cultivated crops. These soils are classified under the Wet-based soils (Class V) land capability class, and frequent waterlogging is their main limitation.

Figure 13: View of the identified Dundee soil forms.

Table 4: Soil forms in hectares (ha) occurring within the study area.

Renewstable® Ntokozo Study Area				
Soil Forms	Area (Ha)	Percentage (%)	Land Capability	Agricultural Potential
Glenrosa/Grabouw	94.10	71.3	Arable (Class IV)	Moderate
Katspruit	5.56	4.2	Watercourse (Class V)	Very Low
Mispah/Glenrosa	32.24	24.4	Grazing (Class VI)	Low
Total Enclosed	131,90	100		

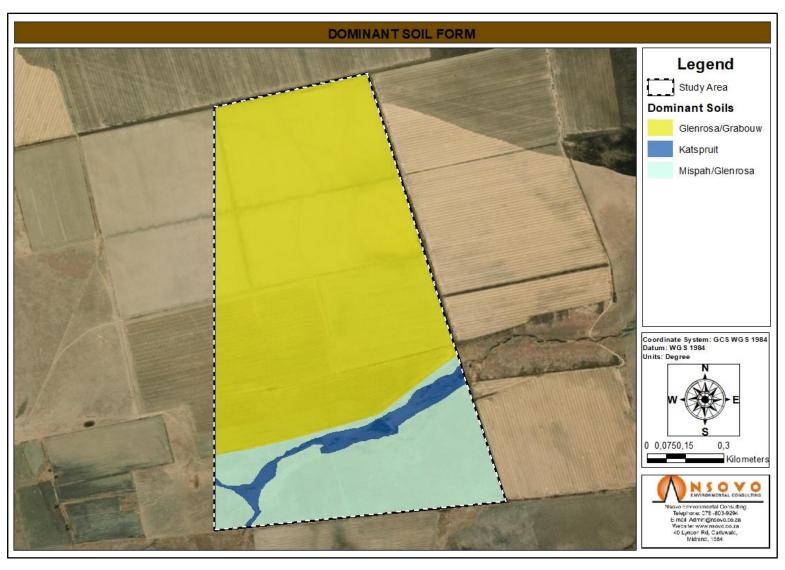


Figure 14: Dominant soils form within the study area.

4.3 LAND CAPABILITY AND AGRICULTURAL POTENTIAL

Land Capability is defined as the most intensive long-term use of land for purposes of rainfed farming, determined by the interaction of climate, soil, and terrain. The soil physical properties with which the agricultural potential for this assessment, agricultural sensitivity, was inferred in consideration of observed limitations to land use due to physical soil properties and prevailing climatic conditions. Figures 15 and 16 below depict the land capability and agricultural potential associated with the study area, while Figure 17 depicts the agricultural potential.

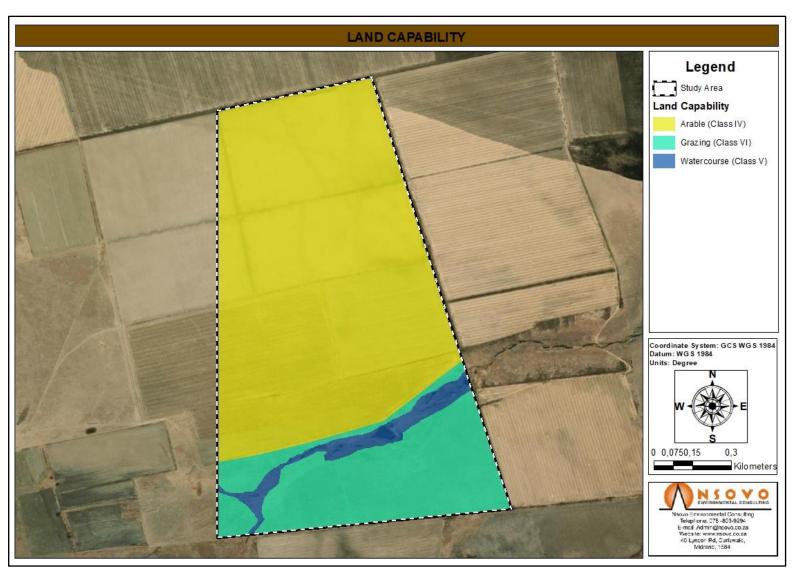


Figure 15: Map depicting land capability of soils within the Study Area.

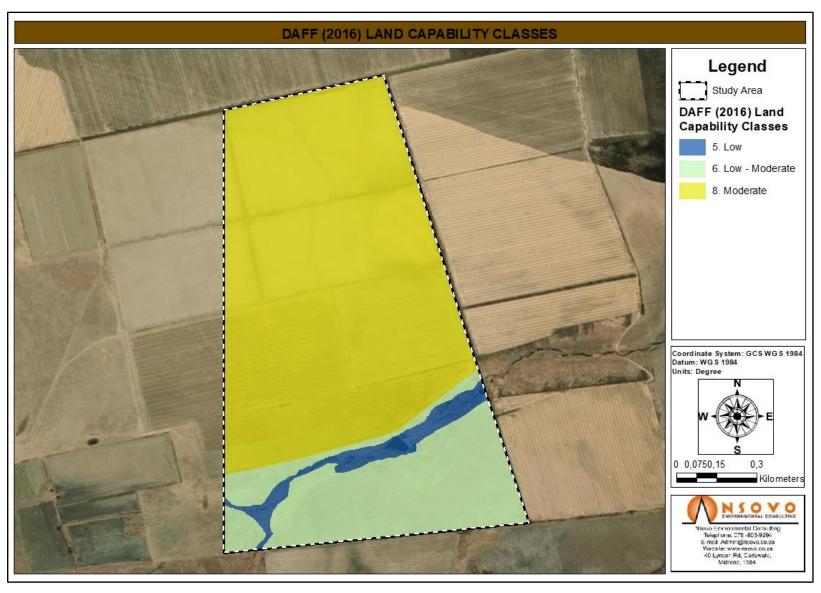


Figure 16: DAFF (2016) Land Capability Classes.

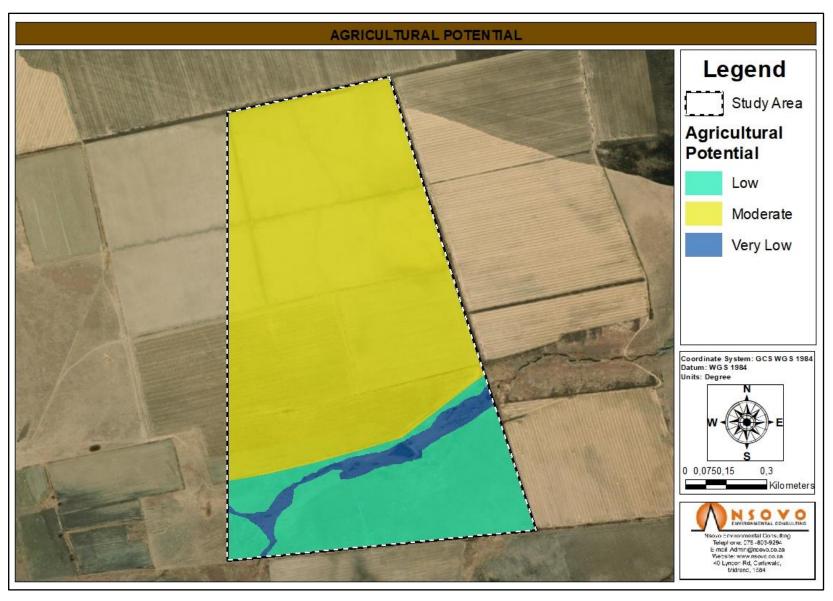


Figure 17: Agricultural potential for soils associated with the soils of the study area.

5. IMPACT ASSESSMENT

5.1 ASSESSMENT METHODOLOGY

According to the NEMA regulations (2014), all the impact assessments should provide quantified scores which show the expected impact and those that will likely result from proposed activities. Significance scoring both assesses and predicts the environmental impacts through the evaluation of the following factors;

- Probability of the impact,
- Duration of the impact,
- Extent of the impact, and
- Magnitude of the impact.

The objective of the assessment of impacts is to identify and assess all the significant impacts that may arise as a result of the Proposed Development implementation and place the consequences of the Proposed Development before the competent authority.

For each of the main project phases the existing and potential future impacts and benefits (associated only with the Proposed Development) were described using the criteria listed in Appendix B. This was done in accordance with the EIA Regulations, promulgated in terms of Section 24 of the NEMA and the criteria drawn from the Integrated Environmental Management (IEM) Guidelines Series, Guideline 5: Assessment of Alternatives and Impacts, published by the Department of Environmental Affairs (April 1998).

The significance of the impacts that may occur as a result of the proposed activities and a description of the mitigation required to limit the identified negative impacts on the identified soils on site are presented in Section 5.2 below.

5.2 IMPACT ASSESSMENT PER PROJECT PHASE

5.2.1 Construction Phase

During the construction phase of the proposed development, the soils are anticipated to be exposed to erosion, dust emission, potential soil contamination and loss of land capability impacts during the construction phase of the proposed development. The main envisaged activities include the following:

• Earthworks will include clearing of vegetation from the surface and stripping topsoil (soil excavation) for foundation preparation where the proposed infrastructure is to be placed. These

- activities are the most disruptive to natural soil horizon distribution and will impact on the current soil hydrological properties and functionality of soil if not mitigated properly;
- Frequent movement of heavy machinery increasing the likelihood of soil contamination from petroleum, oil, and grease substances;
- Other activities in this phase that will impact on soil are the handling and storage of building materials and different kinds of waste. This will have the potential to result in soil pollution when not managed properly.

The disturbance of original soil profiles and horizon sequences of these profiles during earthworks is considered to be a measurable deterioration in terms of erosion. This impact is considered to be localised within the development footprint. This impact will be localised within the site boundary and have medium significance on the soil resource if not managed.

Soil chemical pollution as a result of potential oil and fuel spillages from vehicles, is considered to be a moderate deterioration of the soil resource. This impact will be localised within the site boundary and have medium significance on the soil resource if not managed.

Soil compaction will be a measurable deterioration that will occur as a result of the heavy vehicles commuting on the existing roads as well as any newly constructed access road to increase access to the solar PV plant and the hydrogen plant. The impacts will be localised within the site boundary with medium consequence and significance without mitigation measures.

5.2.2 Operational Phase

The operational phase includes the completion and operation of the proposed development and the perceived impacts include possible runoff, resulting in risk of erosion, constant disturbances of soils by maintenance vehicles and machinery increasing the risk of soil compaction and poor waste management, resulting in waste materials being improperly stored increasing the risk of soil compaction.

The main envisaged operational activities that will impact on soil, land use and land capability include the following:

- General activities including transport on access roads that will result in soil compaction or generation of runoff respectively.
- Waste generation (non-mineral waste) and accidental spills and leaks may result in soil chemical pollution if not managed.

The disturbance of original soil profiles and horizon sequences of these profiles is considered to be a measurable deterioration, which will lead to soil erosion. This impact is considered to be reversible overtime but will be localised within the site boundary. This impact is possible and will have medium significance if not managed.

Soil chemical pollution as a result of pollutants leaching into subsurface soil horizons where waste is stored or from leaking maintenance vehicles, is considered to be a moderate deterioration of the soil resource. This impact will be localised within the site boundary and have medium significance on the soil resource if not mitigated properly.

Soil compaction will be a measurable deterioration that will occur as a result of the movement of vehicles on the soil surfaces (including access roads). This is a reversible impact over time impact that will be localised within the site boundary with medium consequence and significance if not mitigated properly.

The current land capability and land use of areas will be lost due to the change in land use as the agricultural practices taking place currently will cease for the duration of the solar PV lifespan.

5.2.3 Closure and Decommissioning Phase

Decommissioning can be considered a reverse of the construction phase with the demolition and removal of the majority of infrastructure and activities very similar to those described with respect to the construction phase.

The main envisaged decommissioning activities that will impact on soil, land use and land capability include the following:

- Transport of materials away from site. This will compact the soil of the existing roads and fuel and oil spills from vehicles may result in soil chemical pollution.
- Earthworks will include redistribution of inert waste materials to fill the ponds and ditches as well as topsoil to add to the soil surface. These activities will not result in further impacts on land use and land capability but may increase soil compaction.
- Other activities in this phase that will impact on soil are the handling and storage of materials
 and different kinds of waste generated as well as accidental spills and leaks with
 decommissioning activities. This will have the potential to result in soil pollution when not
 managed properly.

5.3 IMPACT SUMMARY TABLES

The impact summary tables are presented in Tables 5 to 8 below for the impact on loss of land capability, soil erosion, soil compaction and soil contamination.

Table 5: Rating of impacts for the loss of land capability and associated mitigation measures for all project phases.

Issue	Corrective			Impact	rating criteria		Cignificance					
issue	measures	Nature	Extent	Duration	Magnitude	Probability	Significance					
Constructi	Construction Phase:											
Clearing of	vegetation and levelling	soils where nec	cessary, such as	removing topsoil m	naterial to create the f	foundation for constructing solar PV	, the hydrogen plant an					
temporary	laydown areas. Road upg	grades and main	tenance potenti	ally encroaching on	cultivated areas							
WOM Neg 3 2 8 5 65												
	WM	Neg	2	1	6	4	36					
Mitigation	Measures											
The projec	t operations be kept with	in the demarcat	ed footprint are	as as far as practica	lly possible to minimis	e edge effects.						
Avoid pern	nanently impacting topso	il and subsoil bu	t salvage the ma	ximum depth of the	ese when clearing area	as for infrastructure.						
Make use	of geotextiles and contou	rs to control soil	erosion and rev	regetation of expose	ed soil surfaces where	possible.						
Constructi	on vehicle movement sho	ould be limited to	o within the proj	ect perimeter fence	e to avoid unnecessary	compaction of adjacent soils.						
Always stri	p a suitable time before t	he placement o	r construction of	the solar PV and h	ydrogen plant facilities	s, to avoid soil loss and contaminatio	า.					
Always strip a suitable time before the placement or construction of the solar PV and hydrogen plant facilities, to avoid soil loss and contamination. Access roads should be aligned to the existing road as far as practically possible to avoid further agricultural impact and unnecessary soil disturbance.												
Access roa	us silibulu be aligned to ti				_							
	al and Maintenance Phase	e										
Operation	al and Maintenance Phase		hydrogen plant;	constant traffic an	d frequent disturbance	es of soils resulting in loss of land cap	ability.					

Issue	Corrective measures		Significance				
		Nature	Extent	Duration	Magnitude	Probability	Significance
Corre	ctive Measures	Neg	1	4	4	3	27

Mitigation Measures

Maintenance vehicles should be checked for leakages of hydrocarbons prior to commencement of maintenance activities.

The solar panels should be cleaned with clean water and use of chemicals should be avoided to minimise the likelihood of potential soil contamination.

Disturbed areas adjacent to the footprint area should be revegetated with indigenous grass mix to limit potential soil erosion.

Make use of geotextiles and contours to control soil erosion and revegetation of exposed soil surfaces where possible.

Decommissioning Phase

Potential future decommissioning activities will likely involve dismantling and removal of the power plant and other on-site buildings, equipment, and facilities, including possible excavation and removal of concrete pads; transferring of waste materials to disposal, recycling, and/or treatment facilities, as applicable (where re-use is not possible)

No Corrective Measures	Neg	2	2	6	3	30
Corrective Measures	Neg	1	1	4	3	18

Mitigation Measures

The Study area should be revegetated with indigenous vegetation to help with erosion and dust control as required or returned to agricultural use.

Establish natural drainage patterns as pre-construction through recontouring and revegetation.

Dismantled equipment should be recycled, and non-recyclable material should be appropriately land filled by an approved service provider.

Issue	Corrective measures		Significance							
		Nature	Extent	Duration	Magnitude	Probability	Significance			
Any portion	Any portions of the site with compacted soil should be de-compacted and any excavations backfilled with soils to restore the site for future use.									

Table 6: Rating of impacts for soil erosion and associated mitigation measures for all project phases.

Issue	Corrective			Impact	rating criteria		Significance					
13346	measures	Nature	Extent	Duration	Magnitude	Probability	Significance					
Constructio	Construction Phase:											
Clearing of vegetation and levelling soils where necessary, such as removing topsoil material to create the foundation for constructing solar PV, the hydrogen plant and												
temporary I	temporary laydown areas. Road upgrades and maintenance potentially encroach on cultivated areas and increase the likelihood of soil erosion.											
	WOM	Neg	3	2	6	5	55					
	WM	Neg	2	1	4	4	28					
Mitigation I	Measures											
The project	operations be kept with	nin the demarcat	ed footprint are	as as far as practica	Illy possible to minimise	edge effects.						
No site-clea	No site-clearing activities should take place during periods of heavy rainfall.											
To reduce r	To reduce runoff-induced erosion, access roads should be sloped at a lower gradient.											
Make use o	f geotextiles and contou	ırs to control soil	erosion and rev	regetation of expos	ed soil surfaces where p	possible.						

Issue	Corrective			Impact	rating criteria		Significance			
issue	measures	Nature	Extent	Duration	Magnitude	Probability	Significance			
Considerati suppression	_	o the use of wat	ter for dust sup	pression— use of b	inding agents like mol	asses should be considered for uns	ealed roads and for dust			
Always strip	p a suitable time before	the placement o	r construction o	f the solar PV and h	ydrogen plant facilities	, to avoid soil loss and contaminatio	n.			
Access roads should be aligned to the existing road as far as practically possible to avoid further agricultural impact and unnecessary soil disturbance.										
Operational and Maintenance Phase										
Operation a	and maintenance of the	solar PV and the	hydrogen plant	; constant traffic an	d frequent disturbance	s of soils resulting in loss of land cap	pability.			
No Cor	rrective Measures	Neg	2	4	6	3	36			
Corre	ective Measures	Neg	1	4	4	3	27			
Mitigation I	Measures									
Maintenan	ce vehicles should be ch	ecked for leakage	es of hydrocarb	ons prior to comme	ncement of maintenan	ce activities.				
The solar pa	anels should be cleaned	with clean water	r and use of che	micals should be av	roided to minimise the	likelihood of potential soil contamina	ation.			
Disturbed a	areas adjacent to the foo	tprint area shou	Id be revegetate	ed with indigenous a	grass mix to limit poten	tial soil erosion.				
Make use o	of geotextiles and contou	ırs to control soil	erosion and rev	vegetation of expos	ed soil surfaces where	possible.				
Decommiss	sioning Phase									

36

Issue	Corrective			Impact	rating criteria		Significance		
13300	measures	Nature	Extent	Duration	Magnitude	Probability	Significance		
Potential fu	uture decommissioning a	activities will like	ly involve disma	ntling and removal	of the power plant an	d other on-site buildings, equipmen	t, and facilities, including		
possible ex	cavation and removal o	f concrete pads;	transferring of	waste materials to	disposal, recycling, ar	nd/or treatment facilities, as applica	ble (where re-use is not		
possible)									
No Cor	No Corrective Measures Neg 2 2 6 3 30								
Corre	ective Measures	Neg	1	1	4	3	18		
Mitigation I	Measures								
The Study a	area should be revegetat	ed with indigenc	ous vegetation to	o help with erosion	and dust control as rec	uired or returned to agricultural use	<u>.</u> 2.		
Establish natural drainage patterns as pre-construction through recontouring and revegetation.									
Dismantled equipment should be recycled, and non-recyclable material should be appropriately land filled by an approved service provider.									
Any portion	ns of the site with compa	acted soil should	be de-compacte	ed and any excavation	ons backfilled with soils	s to restore the site for future use.			

Table 7: Rating of impacts on soil compaction and associated mitigation measures for all project phases.

Issue	Corrective		Significance							
	measures	Nature	Extent	Duration	Magnitude	Probability	Significance			
Construction	Construction Phase:									
Heavy vehic	le traffic within and arc	ound the study ar	ea and potentia	lly compacting the	soil during the construc	ction of solar PV, the hydrogen plan	t and temporary laydown			
areas.										

37

Issue	Corrective		Significance				
	measures	Nature	Extent	Duration	Magnitude	Probability	o.g.m.curice
	WOM	Neg	2	2	6	5	50
	WM	Neg	2	1	4	4	28

Mitigation Measures

The project operations be kept within the demarcated footprint areas as far as practically possible to minimise edge effects.

Unnecessary trafficking and movement over the areas targeted for construction must be avoided, especially heavy machinery

No site clearing activities should take place during periods of heavy rainfall.

Loosening of the soil through ripping and discing prior to the stripping process is recommended to break up crusting.

Compacted soils should be ripped at least 20cm to alleviate.

Access roads should be aligned to the existing road as far as practically possible to avoid further agricultural impact and unnecessary soil disturbance.

Operational and Maintenance Phase

Operation and maintenance of the solar PV and the hydrogen plant; constant traffic and frequent disturbances of soils resulting in soil compaction.

No Corrective Measures	Neg	2	4	6	3	36
Corrective Measures	Neg	1	4	4	3	27

Mitigation Measures

Loosening of the soil through ripping and discing prior to the stripping process is recommended to break up crusting

Issue	Corrective		Significance					
	measures	Nature	Extent	Duration	Magnitude	Probability	Significance	
Unneces	Unnecessary trafficking and movement over the areas targeted for construction must be avoided, especially heavy machinery							

Disturbed areas adjacent to the footprint area should be revegetated with indigenous grass mix to limit potential soil compaction.

Access roads should be inspected and maintained as necessary.

Decommissioning Phase

Potential future decommissioning activities will likely involve dismantling and removal of the power plant and other on-site buildings, equipment, and facilities. During this period, there will be heavy vehicular traffic and thus increasing the likelihood of soil compaction.

No Corrective Measures	Neg	2	2	6	3	30
Corrective Measures	Neg	1	1	4	3	18

Mitigation Measures

The study area should be revegetated with indigenous vegetation to help with soil compaction, runoff, erosion and dust control as required or returned to agricultural use.

Establish natural drainage patterns as pre-construction through recontouring, revegetation, and ripping soils to alleviate soil compaction.

Dismantled equipment should be recycled, and non-recyclable material should be appropriately landfilled by an approved service provider.

Any portions of the site with compacted soil should be de-compacted and any excavations backfilled with soils to restore the site for future use.

Table 8: Rating of impacts on soil contamination and associated mitigation measures for all project phases.

lasus	Corrective		Cincificana.				
Issue	measures	Nature	Nature Extent Duration Magnitude Probability		Significance		
Construction Phase:							
Leaching c	of hydrocarbons chemica	ls into the soils	from maintenar	nce equipment, sola	ar PV or hydrogen p	plant leading to alteration of the soil c	hemical status as well a
contamina	tion of ground water. Pot	tential disposal c	of hazardous and	d non-hazardous wa	ste, including waste	e material spills and refuse deposits into	the soil.
	WOM	Neg	2	2	6	4	40
	WM	Neg	2	1	4	4	28
Mitigation	Measures						
The project operations be kept within the demarcated footprint areas as far as practically possible to minimise edge effects.							
-		iiii tiic aciiiaicat	ea rootprint are	as as fai as practica	ily possible to millili	nise eage effects.	
Ensure pro	oper handling and storage					reagents, etc.) as per their correspondi	ng Safety Data Sheets.
		e of hazardous ch	nemicals and ma	iterials (e.g. fuel, oil	, cement, concrete,		
Maintenar	nce of vehicles and equipr	e of hazardous ch	nemicals and ma	iterials (e.g. fuel, oil	, cement, concrete,	reagents, etc.) as per their correspondi	
Maintenar	nce of vehicles and equipr	e of hazardous ch	nemicals and ma	sterials (e.g. fuel, oil	, cement, concrete,	reagents, etc.) as per their correspondi	
Maintenar	nce of vehicles and equipr	e of hazardous ch ment should be o	nemicals and ma carried out in de handling and sto	sterials (e.g. fuel, oil signated appropriat prage.	, cement, concrete,	reagents, etc.) as per their correspondi	
Maintenar oils and gr Implement Developme	nce of vehicles and equipreases. ting regular site inspectio	e of hazardous chement should be one of the contact	nemicals and ma carried out in de handling and sto	sterials (e.g. fuel, oil signated appropriat prage.	, cement, concrete,	reagents, etc.) as per their correspondi	
Maintenar oils and gr Implement Developme	nce of vehicles and equipreases. ting regular site inspection	e of hazardous chement should be on the control of	nemicals and ma carried out in de handling and sto	sterials (e.g. fuel, oil signated appropriat prage. s clean up.	, cement, concrete, e facilities fitted wit	reagents, etc.) as per their correspondi	

Issue	Corrective measures		Significance				
issue		Nature	Extent	Duration	Magnitude	Probability	0,6,1111001100
Corrective Measures		Neg	1	4	4	3	27

Mitigation Measures

Ensure proper handling and storage of hazardous chemicals and materials (e.g. fuel, oil, cement, concrete, reagents, etc.) as per their corresponding Safety Data Sheets.

Maintenance of vehicles and equipment should be carried out in designated appropriate facilities fitted with spillage containment, floors and sumps to capture any fugitive oils and greases.

Implementing regular site inspections for materials handling and storage.

Development of detailed procedures for spills containment and soils clean up.

Decommissioning Phase

Potential future decommissioning activities will likely involve dismantling and removal of the power plant and other on-site buildings, equipment, and facilities. During this period, there will be heavy vehicular traffic and thus increasing the likelihood of soil contamination.

No Corrective Measures	Neg	2	2	6	3	30
Corrective Measures	Neg	1	1	4	3	18

Mitigation Measures

The study area should be revegetated with indigenous vegetation to help with soil compaction, runoff, erosion and dust control as required or returned to agricultural use.

Establish natural drainage patterns as pre-construction through recontouring, revegetation, and ripping soils to alleviate soil compaction.

Dismantled equipment should be recycled, and non-recyclable material should be appropriately landfilled by an approved service provider.

Issue	Corrective measures		Significance						
13300		Nature	Extent	Duration	Magnitude	Probability	Significance		
Any portions of the site with compacted soil should be de-compacted and any excavations backfilled with soils to restore the site for future use.									

5.4 GROSS AGRICULTURAL INCOME FROM THE STUDY AREA

Based on site observations, majority of the study area was transformed from natural grazing to cultivation through deep in-situ ripping and thus the area under which maize cultivation was observed was where the soils of Mispah/Grabouw were observed, which account for 28.38 ha. The potential gross income that can be generated from the land annually, was calculated by using the long-term maize yields of 4 tons per hectare obtained from the NAR Atlas manual.

Production figures for areas under dryland agriculture:

Cultivated area = 94.10 ha

Expected yield = 4 tons/ha

Total yield = 23.38 ha * 4 tons/ha

= 376.4 tons

Price of Maize = R4105/ton

Financial Yield =93.52 * 4105

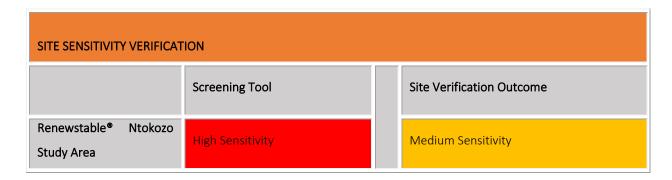
= R1 511 246 per production season (before input costs are taken into account)

It is envisaged that there will be loss of economic yield from the study area during the lifespan of the proposed solar facility. Reliable income can potentially be generated by the farming enterprises through the lease of the land to the energy facility. This is likely to increase their cash flow and financial security and thereby can improve farming operations.

5.5 IMPACT STATEMENT AND SCREENING TOOL VERIFICATION

The development footprint presents areas of active pasture utilised for grazing purposes and some grass harvested and used for stall feeding. These areas are critical for the livestock farming taking place within the study area and regarded important from an agricultural point of view. According to the desk-based assessment (i.e., sourced from the Natural Agricultural Resource Atlas of South Africa database) the grazing capacity for this area is 4 Hectares per livestock unit which is considered adequate for large scale farming. It was also evident during the site verification that the grazing land was utilised for fodder which means that these areas are actively used for large scale purposes. As such, this presents a constraint for this project.

The loss of agricultural soils and the long-term change in land use will be localised to within the study area. The integrated mitigation measures must be implemented accordingly, with the aim of minimising the potential loss of these valuable soils considering the need for sustainable development.


Although the loss of agricultural soils and the permanent change in land use will be localised to within the study area, the cumulative loss of agricultural resources locally and regionally is considered to be moderate without mitigation and low with mitigation measures. It is the opinion of the specialist that the unmitigated scenario poses

a threat to the sustainability of high potential agricultural soils. Therefore, integrated mitigation measures must be implemented accordingly, with the aim of minimising the potential loss of these valuable soils considering the need for sustainable development. Mixed land use such as sheep grazing between solar arrays should be considered so as to retain the agricultural production while generating renewable energy.

The screening tool analysis was conducted, which presented the findings as the impact on agricultural resources being of high sensitivity in terms of agricultural potential. Based on the outcomes of the field assessment, this was found to be of moderate significance impact as presented on the screening tool due to the dominant soil forms, which are not high potential agricultural soils due to various limitations, which include shallower depth and requiring intensive management strategies to cultivate on. The land capability of the surrounding soils, as well as the agricultural potential, are very low to moderate due to adequate climatic conditions (i.e., rainfall, temperature) and appropriate slope, which allows for intensive commercial agricultural practices.

Table 9: Screening tool assessment VS field verified verification assessment.

It is the opinion of the specialist that this study provides the relevant information required for the Environmental Impact Assessment phase of the project to ensure that appropriate consideration of the agricultural resources in the study area are made in support of the principles of Integrated Environmental Management (IEM) and sustainable development.

5.6 CONSIDERATION OF RENEWABLE DEVELOPMENT ZONES

The South African Renewable Energy EIA application database (SA REEA) identifies the boundaries for the known renewable energy project within a 50 km radius of the study area. Thus, this information was used to consider the overall potential cumulative impacts of renewable energy projects. These projects are presented in Table 10 below.

Table 10: Known renewable energy projects within a 50 km radius of the proposed Renewstable Ntokozo solar facility.

Project Title	DEA_REF	NEAS_REF	APPLICANT
Proposed construction of a 75 MW Solar (PV) electricity installlation on various portions of the Farm Grootvlei No 453 IR Dipaleseng Local Municipality, Mpumalanga Province.	12/12/20/2060	DEA/EIA/0000065/201 1	Clare Energy and Habitat Pty Ltd
Proposed 65MW solar PV fascility at Majuba Power Station in Mpumalanga Province.	14//12/16/3/3/2/75 2	DEA/EIA/0002665/201 5	Eskom Holdings SOC Limited
65 MW Majuba Photovoltaic (PV) Energy Facility and Its associated Infrastructure on portion 1, 2 and 6 of the farm Witkoppies 81 Hs, Amersfoort, within the Dr Pixley Ka Seme Local Municipality, Mpumalanga Province.	14/12/16/3/3/2/752	DEA/EIA/0002665/201 5	Eskom Holdings SOC Limited
65.9 MW Tutuka Photovoltaic (PV) Energy Facility and Its associated Infrastructure on portion 4, 10, 11 and 12 of the Farm Pretorius Vley 374 is near Standerton within Lekwa, Mpumalanga Province.	14/12/16/3/3/2/754	DEA/EIA/0002646/201 4	Eskom Holdings SOC Limited

6. CONCLUSION

Nsovo Environmental Consulting was appointed by Hydrogen de France (HDF) to conduct the soil, land use and land capability study as part of the Environmental Impact Assessment (EIA) process for the proposed Renewstable power plants and associated infrastructure (Hydrogen Power Centre) within portion 10 of the farm Schurvepoort 63-HS in the province of Mpumalanga, South Africa (henceforth referred to as study area).

The study area is located within a subtropical highland climate or Monsoon-influenced temperate oceanic climate. This climate is characterized by cold, dry winters and warm, wet summers. The summers experience heavy precipitation, due to the presence of unstable humid air masses that encourage thunderstorm development. The mean annual rainfall ranges between 601-800 mm, which is considered sufficient to support rainfed agriculture. However, it is important to carefully consider the planting dates and the length of the growing season, as they may be affected.

The development footprint presents areas of active pasture utilised for grazing purposes and some grass harvested and used for stall feeding. These areas are critical for the livestock farming taking place within the study area and regarded important from an agricultural point of view. According to the desk-based assessment (i.e., sourced from the Natural Agricultural Resource Atlas of South Africa database) the grazing capacity for this area is 4 Hectares per livestock unit which is considered adequate for large scale farming. It was also evident during the site verification that the grazing land was utilised for fodder which means that these areas are actively used for large scale purposes. As such, this presents a constraint for this project.

The loss of agricultural soils and the long-term change in land use will be localised to within the study area. The integrated mitigation measures must be implemented accordingly, with the aim of minimising the potential loss of these valuable soils considering the need for sustainable development.

Although the loss of agricultural soils and the permanent change in land use will be localised to within the study area, the cumulative loss of agricultural resources locally and regionally is considered to be moderate without mitigation and low with mitigation measures. It is the opinion of the specialist that the unmitigated scenario poses a threat to the sustainability of high-potential agricultural soils. Therefore, integrated mitigation measures must be implemented accordingly, with the aim of minimising the potential loss of these valuable soils, considering the need for sustainable development. Mixed land use, such as sheep grazing between solar arrays, should be considered so as to retain agricultural production while generating renewable energy.

The screening tool analysis was conducted, which presented the findings as the impact on agricultural resources being of high sensitivity in terms of agricultural potential. Based on the outcomes of the field assessment, this was found to be of moderate significance impact as presented on the screening tool due to the dominant soil forms, which are not high potential agricultural soils due to various limitations, which include shallower depth and requiring intensive management strategies to cultivate on. The land capability of the surrounding soils, as well as

the agricultural potential, are very low to moderate due to adequate climatic conditions (i.e., rainfall, temperature) and appropriate slope, which allows for intensive commercial agricultural practices.

It is the opinion of the specialist that this study provides the relevant information required for the Environmental Impact Assessment phase of the project to ensure that appropriate consideration of the agricultural resources in the study area are made in support of the principles of Integrated Environmental Management (IEM) and sustainable development.

7. REFERENCES

- Conservation of Agricultural Resources Act (CARA), 1983 (Act No. 43 of 1983).
- Council of GeoScience (CGS)., 2001.Geological survey (South Africa). Pretoria, South Africa.
- Department of Agriculture, Forestry and Fisheries. Agricultural Geo-Referenced Information system (AGIS).

 Grazing Capacity Maps.
- Department of Agriculture, Forestry and Fisheries.,1993. Agricultural Geo-referenced Information system (AGIS).

 Grazing Capacity Maps.
- Gauteng Department of Agriculture and Rural Development, 2013.
- Klingebiel, A. A., & Montgomery, P. H. (1961). Land-Capability Classification. Soil Conservation Service, U.S. Department of Agriculture, Agriculture Handbook No. 210.
- Land Type Survey Staff, 1976-2006. Land type Survey Database. ARC-ISCW, Pretoria.
- National Department of Agriculture, 2002. Development and Application of a Land Capability Classification System for South Africa
- Scotney, D.M., Ellis, F., Nott, R.W., Taylor, K.P., Van Niekerk, B.J., Verster, E. & Wood, P.C., 1987. A system of soil and land capability classification for agriculture in the SA TBVC states. Dept. Agric., Pretoria.
- Smith, B., 2006. The Farming Handbook. Netherlands & South Africa: University of KwaZulu Natal Press & CTA.
- Soil Classification Working Group, 2018. Soil classification. A Natural and Anthropogenic System for South Africa.

 Mem. agric. nat. Resource. S. Afr. No. 15. Dept. Agric. Dev., Pretoria.

APPENDIX A: INDEMNITY

- This report is based on survey and assessment techniques which are limited by time and budgetary constraints relevant to the type and level of investigation undertaken.
- This report is based on a desktop investigation using available information and data related to the site to be affected, *in situ* fieldwork, surveys, and assessments, and the specialist's best scientific and professional knowledge.
- The Precautionary Principle has been applied throughout this investigation.
- The findings, results, observations, conclusions, and recommendations given in this report are based on the specialist's best scientific and professional knowledge as well as information available at the time of the study.
- Additional information may become known or available later in the process for which no allowance could have been made at the time of this report.
- The specialist reserves the right to modify this report, recommendations, and conclusions at any stage should additional information become available.
- Information and recommendations in this report cannot be applied to any other area without proper investigation.
- This report, in its entirety or any portion thereof, may not be altered in any manner or form or for any purpose without the specific and written consent of the specialist as specified above.
- Acceptance of this report, in any physical or digital form, serves to confirm acknowledgment of these terms and liabilities.

Helsibre

Tshiamo Setsipane

12 September 2024

APPENDIX B: IMPACT ASSESSMENT METHODOLOGY

The assignment of significance ratings has been undertaken based on experience of the EIA team, as well as through research. Subsequently, mitigation measures have been identified and considered for each impact and the assessment repeated in order to determine the significance of the residual impacts (the impact remaining after the mitigation measure has been implemented).

Status of Impact

- The impacts are assessed as either having a:
- The negative effect (i.e., at a `cost' to the environment),
- positive effect (i.e., a `benefit' to the environment) or
- Neutral effect on the environment.

Extent of the Impact

- (1) Site (site only),
- (2) Local (site boundary and immediate surrounds),
- (3) Regional (within the project area),
- (4) National, or
- (5) International.

Duration of the Impact

The length that the impact will last is described as either:

- (1) immediate (<1 year)
- (2) short term (1-5 years),
- (3) medium term (5-15 years),
- (4) long-term (ceases after the operational life span of the project),
- (5) Permanent.

Magnitude of the Impact

The intensity or severity of the impacts is indicated as either:

- (0) none,
- (2) Minor,
- (4) Low,
- (6) Moderate (environmental functions altered but continue),
- (8) High (environmental functions temporarily cease), or
- (10) Very high / Unsure (environmental functions permanently cease).

Probability of Occurrence

The likelihood of the impact actually occurring is indicated as either:

- (0) None (the impact will not occur),
- (1) improbable (probability very low due to design or experience)
- (2) low probability (unlikely to occur),
- (3) medium probability (distinct probability that the impact will occur),
- (4) high probability (most likely to occur), or
- (5) Definite.

Significance of the Impact

Based on the information contained in the points above, the potential impacts are assigned a significance rating (S). This rating is formulated by adding the sum of the numbers assigned to extent (E), duration (D) and magnitude (M) and multiplying this sum by the probability (P) of the impact.

S=(E+D+M) P

The significance ratings are given below.

(<30) low (i.e., where this impact would not have a direct influence on the decision to develop in the area), (30-60) medium (i.e., where the impact could influence the decision to develop in the area unless it is effectively mitigated),

(>60) high (i.e., where the impact must influence the decision process to develop in the area).

Assessment Of Impacts

The following section presents the impacts, and the significance as rated by the specialists as well as the EAP. The Tables below highlight the significance of the identified impacts for both the construction and operational phases of the proposed development.

The impacts are assessed according to the criteria outlined below. Each issue is ranked according to extent, duration, magnitude (intensity), and probability. From these criteria, a significance rating is obtained, the method and formula is also described below. Mitigation measures and recommendations have been made and are presented in tabular form below.

The ratings are assessed with and without mitigation and color-coded as follows to indicate the significance:

High	>60
Medium	>30 - 60
Low	<30

Issue	Corrective measures		Significance						
15546		Nature	Extent	Duration	Magnitude	Probability	Significance		
Constr	Construction Phase:								
Mitiga	tion Measures								
Operat	tional Phase								
Mitiga	Mitigation Measures								

APPENDIX C: CURRICULUM VITAE OF SPECIALISTS

CURRICULUM VITAE OF TSHIAMO SETSIPANE

PROFESSIONAL EXPERIENCE

Soil Science Consultant

- Conducting Soil, Land Use and Land Capability Assessments:
 - Assess existing information for rainfall data and current land uses.
 - Conduct a desktop assessment within the study area using the digital satellite imagery and other suitable digital aids.
 - A soil classification survey and agricultural potential will be conducted within the proposed development area.
 - A soil classification survey and agricultural potential will be conducted within the proposed development area.
 - Provide recommended mitigation measures to implement to manage the anticipated impacts and to comply with the applicable legislations.
 - o Compile a report on the findings of the assessment and presented in an electronic format.
- Conducting Hydropedological Impact Surveys:
 - o Identify dominant hillslopes (from crest to stream) of the project area using terrain analysis.
 - o Conduct a transect soil survey on each of the identified hillslope.
 - Hydrological behaviour of the identified hillslope described according to the identified hydropedological groups;
 - Graphical representation of the dominant and sub-dominant flowpaths at hillslope scale prior to development and post development.
 - o The impact of the proposed development on the hydropedological behaviour described in a report format.
 - Quantification of hydropedological fluxes using the Soil and Water Analysis Tool (SWAT+) to determine the losses to the wetland systems though the proposed project
- Conducting Land Contamination Assessments and Soil Monitoring Assessments:
 - Assessments of historic and current storage of hazardous waste and materials on soils.
 - Topsoil stockpile quality assessment for future usage.
 - Monitoring programme to determine the dust suppression impact on soil chemical parameters.

EDUCATION

M.Sc. (Agric): Soil Science

01/2016-03/2019

- Dissertation: Characterisation of hydropedological processes and properties of a sandstone and a tillite hillslope, Kwa-Zulu Natal, South Africa.
- Graduated Cum-Laude.
- B.Sc. (Agric) Honours: Soil Science

01/2014 - 11/2014

- Majored in soil fertility, soil physics, soil geography and soil chemistry.
- Research Project: Soil as an indicator of soil water regime.
- B.Sc. (Agric): Soil Science and Agrometeorology

2010 - 11/2013

- Majored in soil science and agrometeorology.
- Minored in agronomy and plant pathology.

PROFESSIONAL MEMBERSHIP AND AFFILIATION

- Professional Natural Scientist with South African Council for Natural Scientific Professions (SACNASP)
 Registered, 11/2015 Current
- Member of the Soil Science Society of South Africa (SSSSA)
- Member, South African Soil Surveyors Organization (SASSO)
- Member of the South African Wetland Society (SAWS)

